\[ a y(x)+y''(x)+y(x) y'(x)-y(x)^3=0 \] ✗ Mathematica : cpu = 100.126 (sec), leaf count = 0 , could not solve
DSolve[a*y[x] - y[x]^3 + y[x]*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 1.231 (sec), leaf count = 8191
\[ \left \{ \int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( 126\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}-126\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126 \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126-4\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126+4\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( 126\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}-126\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126 \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126-4\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126+4\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( 63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}-63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( -{\frac {63}{-2\,{{\it \_a}}^{6}+6\,{{\it \_a}}^{4}a-6\,{{\it \_a}}^{2}{a}^{2}+160\,{{\it \_C1}}^{3}+2\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{2}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-2\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( -{\frac {63}{-2\,{{\it \_a}}^{6}+6\,{{\it \_a}}^{4}a-6\,{{\it \_a}}^{2}{a}^{2}+160\,{{\it \_C1}}^{3}+2\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{2}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}+2\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{6}-12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{4}a+12\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{{\it \_a}}^{2}{a}^{2}-4\,{\it \_C1}\,\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}\sqrt {5}{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) \right ) }{d{\it \_a}}-x-{\it \_C2}=0 \right \} \]