\[ b x^{5-2 a} e^{y(x)}+a y'(x)+x y''(x)=0 \] ✗ Mathematica : cpu = 0.611607 (sec), leaf count = 0 , could not solve
DSolve[b*E^y[x]*x^(5 - 2*a) + a*Derivative[1][y][x] + x*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 1.523 (sec), leaf count = 124
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a}+2\,a \left ( \int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1} \right ) -6\,\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}-6\,{\it \_C1},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) = \left ( b{{\rm e}^{{\it \_a}}}+2\,{a}^{2}-8\,a+6 \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{3}+ \left ( a-1 \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2} \right \} , \left \{ {\it \_a}=y \left ( x \right ) -2\,a\ln \left ( x \right ) +6\,\ln \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) = \left ( x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -2\,a+6 \right ) ^{-1} \right \} , \left \{ x={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},y \left ( x \right ) ={\it \_a}+2\,a \left ( \int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1} \right ) -6\,\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}-6\,{\it \_C1} \right \} ] \right ) \right \} \]