\[ x^3 \left (y''(x)+y(x) y'(x)-y(x)^3\right )+12 x y(x)+24=0 \] ✗ Mathematica : cpu = 22.6462 (sec), leaf count = 0 , could not solve
DSolve[24 + 12*x*y[x] + x^3*(-y[x]^3 + y[x]*Derivative[1][y][x] + Derivative[2][y][x]) == 0, y[x], x]
✓ Maple : cpu = 0.609 (sec), leaf count = 102
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a}\,{{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) = \left ( -{{\it \_a}}^{3}-{{\it \_a}}^{2}+14\,{\it \_a}+24 \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{3}+ \left ( -{\it \_a}+3 \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2} \right \} , \left \{ {\it \_a}=xy \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) =-{\frac {1}{x \left ( x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +y \left ( x \right ) \right ) }} \right \} , \left \{ x= \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right ) ^{-1},y \left ( x \right ) ={\it \_a}\,{{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right \} ] \right ) \right \} \]