\[ 2 a^2 y(x)^2-(a y(x)-1) y'(x)+a y(x)-2 b^2 y(x)^3+y(x) y''(x)-y'(x)^2=0 \] ✗ Mathematica : cpu = 61.7339 (sec), leaf count = 0 , could not solve
DSolve[a*y[x] + 2*a^2*y[x]^2 - 2*b^2*y[x]^3 - (-1 + a*y[x])*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 2.025 (sec), leaf count = 84
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a},[ \left \{ \left ( {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) \right ) {\it \_b} \left ( {\it \_a} \right ) -{\frac {2\,{b}^{2}{{\it \_a}}^{3}-2\,{a}^{2}{{\it \_a}}^{2}+a{\it \_a}\,{\it \_b} \left ( {\it \_a} \right ) + \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}-{\it \_a}\,a-{\it \_b} \left ( {\it \_a} \right ) }{{\it \_a}}}=0 \right \} , \left \{ {\it \_a}=y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right \} , \left \{ x=\int \! \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{-1}\,{\rm d}{\it \_a}+{\it \_C1},y \left ( x \right ) ={\it \_a} \right \} ] \right ) \right \} \]