\[ (y(x)+x) y''(x)+y'(x)^2-y'(x)=0 \] ✓ Mathematica : cpu = 0.845534 (sec), leaf count = 259
\[\left \{\left \{y(x)\to \frac {1}{2} \left (-\sqrt {2} e^{-2 c_1} \sqrt {4 e^{3 c_1} x+e^{2 c_1}-4 e^{3 c_1} c_2}+e^{-c_1}-4 c_2+2 x\right )\right \},\left \{y(x)\to \frac {1}{2} \left (\sqrt {2} e^{-2 c_1} \sqrt {4 e^{3 c_1} x+e^{2 c_1}-4 e^{3 c_1} c_2}+e^{-c_1}-4 c_2+2 x\right )\right \},\left \{y(x)\to \frac {1}{2} \left (-\sqrt {2} e^{-2 c_1} \sqrt {4 e^{3 c_1} x+e^{2 c_1}+4 e^{3 c_1} c_2}+e^{-c_1}+4 c_2+2 x\right )\right \},\left \{y(x)\to \frac {1}{2} \left (\sqrt {2} e^{-2 c_1} \sqrt {4 e^{3 c_1} x+e^{2 c_1}+4 e^{3 c_1} c_2}+e^{-c_1}+4 c_2+2 x\right )\right \}\right \}\]
✓ Maple : cpu = 0.344 (sec), leaf count = 16
\[ \left \{ y \left ( x \right ) =\sqrt {{\it \_C1}+2\,x}{\it \_C2}+{\it \_C1}+x \right \} \]