\[ \left (x^2+y(x)^2\right ) y''(x)-\left (x y'(x)-y(x)\right ) \left (y'(x)^2+1\right )=0 \] ✓ Mathematica : cpu = 0.260216 (sec), leaf count = 74
\[\text {Solve}\left [\frac {1}{2} \left (i \cot \left (c_1\right ) \left (\log \left (1-\frac {i y(x)}{x}\right )-\log \left (1+\frac {i y(x)}{x}\right )\right )+\log \left (1-\frac {i y(x)}{x}\right )+\log \left (1+\frac {i y(x)}{x}\right )\right )=c_2-\log (x),y(x)\right ]\]
✓ Maple : cpu = 1.007 (sec), leaf count = 49
\[ \left \{ y \left ( x \right ) ={\frac {1}{{{\rm e}^{{\it \_C2}}} \left ( {\it \_C1}+1 \right ) } \left ( i{{\rm e}^{{\it \_C2}}}x \left ( {\it \_C1}+1 \right ) - \left ( \left ( 2\,i{\it \_C1}+2\,i-{{\rm e}^{{\it \_Z}}} \right ) x \right ) ^{{{\it \_C1}}^{-1}}{{\rm e}^{{\frac {{\it \_C2}}{{\it \_C1}}}}} \right ) } \right \} \]