2.1920   ODE No. 1920

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

{x(t)=x(t)(x(t)2+y(t)21)y(t),y(t)=y(t)(x(t)2+y(t)21)+x(t)} Mathematica : cpu = 0.0828333 (sec), leaf count = 0 , could not solve

DSolve[{Derivative[1][x][t] == -y[t] + x[t]*(-1 + x[t]^2 + y[t]^2), Derivative[1][y][t] == x[t] + y[t]*(-1 + x[t]^2 + y[t]^2)}, {x[t], y[t]}, t]

Maple : cpu = 4.986 (sec), leaf count = 248

{[{x(t)=0},{y(t)=0}],[{x(t)=ODESolStruc(_a,[{(dd_a_b(_a))_b(_a)+12_a3(6(_b(_a))2_a24_b(_a)_a3+4_a46_b(_a)_a4_a2+64(_b(_a))2_a664_b(_a)_a716_a8+64(_b(_a))3_a3+128(_b(_a))2_a4+48_b(_a)_a5+48(_b(_a))2_a2+64_b(_a)_a3+16_a4+12_b(_a)_a+8_a2+11)=0},{_a=x(t),_b(_a)=ddtx(t)},{t=(_b(_a))1d_a+_C1,x(t)=_a}])},{y(t)=3(ddtx(t))2x(t)2(ddtx(t))(x(t))2+(d2dt2x(t))(x(t))2+2(x(t))3ddtx(t)x(t)4x(t)ddtx(t)+2(x(t))2+1}]}