2.1935   ODE No. 1935

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

{x(t)=x(t)(y(t)2z(t)2),y(t)=y(t)(z(t)2x(t)2),z(t)=z(t)(x(t)2y(t)2)} Mathematica : cpu = 0.0524665 (sec), leaf count = 0 , could not solve

DSolve[{Derivative[1][x][t] == x[t]*(y[t]^2 - z[t]^2), Derivative[1][y][t] == y[t]*(-x[t]^2 + z[t]^2), Derivative[1][z][t] == (x[t]^2 - y[t]^2)*z[t]}, {x[t], y[t], z[t]}, t]

Maple : cpu = 1.733 (sec), leaf count = 741

{[{x(t)=0},{y(t)=0},{z(t)=_C1}],[{x(t)=0},{y(t)=1(e_C2_C1)2(e_C1t)21((e_C2_C1)2(e_C1t)21)_C1(e_C2_C1)2(e_C1t)2,y(t)=1(e_C2_C1)2(e_C1t)21((e_C2_C1)2(e_C1t)21)_C1(e_C2_C1)2(e_C1t)2},{z(t)=1y(t)y(t)ddty(t),z(t)=1y(t)y(t)ddty(t)}],[{x(t)=_C1},{y(t)=x(t)},{z(t)=x(t)}],[{x(t)=_C1},{y(t)=x(t)},{z(t)=x(t)}],[{x(t)=_C1},{y(t)=x(t)},{z(t)=x(t)}],[{x(t)=_C1},{y(t)=x(t)},{z(t)=x(t)}],[{x(t)=ODESolStruc(e_g(_f)d_f+_C2,[{dd_f_g(_f)=4(_g(_f))3_f(3_f2+23_f2_g(_f)+_g(_f)+_f_g(_f)+1)+10(_g(_f))2+_g(_f)_f},{_f=ddtx(t)(x(t))3,_g(_f)=(x(t))3((d2dt2x(t))x(t)ddtx(t)+3ddtx(t))1},{t=_g(_f)_f(e_g(_f)d_f+_C2)2d_f+_C1,x(t)=e_g(_f)d_f+_C2}])},{y(t)=14(ddtx(t))(x(t))2x(t)(ddtx(t))(4(ddtx(t))(x(t))5+8(ddtx(t))2(x(t))2(d3dt3x(t))x(t)+(ddtx(t))d2dt2x(t)),y(t)=14(ddtx(t))(x(t))2x(t)(ddtx(t))(4(ddtx(t))(x(t))5+8(ddtx(t))2(x(t))2(d3dt3x(t))x(t)+(ddtx(t))d2dt2x(t))},{z(t)=1x(t)x(t)(x(t)(y(t))2+ddtx(t)),z(t)=1x(t)x(t)(x(t)(y(t))2+ddtx(t))}],[{x(t)=1(e_C2_C1)2(e_C1t)21((e_C2_C1)2(e_C1t)21)_C1(e_C2_C1)2(e_C1t)2,x(t)=1(e_C2_C1)2(e_C1t)21((e_C2_C1)2(e_C1t)21)_C1(e_C2_C1)2(e_C1t)2},{y(t)=0},{z(t)=1x(t)x(t)ddtx(t),z(t)=1x(t)x(t)ddtx(t)}]}