\[ a y(x)+y(x) y'(x)+x=0 \] ✓ Mathematica : cpu = 0.0701949 (sec), leaf count = 70
\[\text {Solve}\left [\frac {1}{2} \log \left (\frac {a y(x)}{x}+\frac {y(x)^2}{x^2}+1\right )-\frac {a \tan ^{-1}\left (\frac {a+\frac {2 y(x)}{x}}{\sqrt {4-a^2}}\right )}{\sqrt {4-a^2}}=c_1-\log (x),y(x)\right ]\]
✓ Maple : cpu = 0.279 (sec), leaf count = 91
\[ \left \{ y \left ( x \right ) ={\it RootOf} \left ( {{\it \_Z}}^{2}-{{\rm e}^{{\it RootOf} \left ( {x}^{2} \left ( - \left ( \tanh \left ( {\frac {2\,{\it \_C1}+{\it \_Z}+2\,\ln \left ( x \right ) }{2\,a}\sqrt { \left ( a-2 \right ) \left ( a+2 \right ) }} \right ) \right ) ^{2}{a}^{2}+4\, \left ( \tanh \left ( 1/2\,{\frac {\sqrt { \left ( a-2 \right ) \left ( a+2 \right ) } \left ( 2\,{\it \_C1}+{\it \_Z}+2\,\ln \left ( x \right ) \right ) }{a}} \right ) \right ) ^{2}+{a}^{2}+4\,{{\rm e}^{{\it \_Z}}}-4 \right ) \right ) }}+1+{\it \_Z}\,a \right ) x \right \} \]