\[ y'(x)-y(x)^2+y(x) \sin (x)-\cos (x)=0 \] ✓ Mathematica : cpu = 6.52575 (sec), leaf count = 69
\[\left \{\left \{y(x)\to -\frac {c_1 \left (1-\sin (x) e^{\cos (x)} \left (\int _1^x e^{-\cos (K[1])} \, dK[1]\right )\right )-\sin (x) e^{\cos (x)}}{c_1 e^{\cos (x)} \int _1^x e^{-\cos (K[1])} \, dK[1]+e^{\cos (x)}}\right \}\right \}\]
✓ Maple : cpu = 0.126 (sec), leaf count = 25
\[ \left \{ y \left ( x \right ) =-{\frac {{{\rm e}^{-\cos \left ( x \right ) }}}{{\it \_C1}+\int \!{{\rm e}^{-\cos \left ( x \right ) }}\,{\rm d}x}}+\sin \left ( x \right ) \right \} \]