\[ (y(x)+x-1) y'(x)-y(x)+2 x+3=0 \] ✓ Mathematica : cpu = 0.108876 (sec), leaf count = 78
\[\text {Solve}\left [2 \sqrt {2} \tan ^{-1}\left (\frac {-y(x)+2 x+3}{\sqrt {2} (y(x)+x-1)}\right )=3 c_1+2 \log \left (\frac {6 x^2+3 y(x)^2-10 y(x)+8 x+11}{(3 x+2)^2}\right )+4 \log (3 x+2),y(x)\right ]\]
✓ Maple : cpu = 0.146 (sec), leaf count = 65
\[ \left \{ y \left ( x \right ) ={\frac {5}{3}}-{\frac {\tan \left ( {\it RootOf} \left ( \sqrt {2}\ln \left ( 18\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}{x}^{2}+24\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}x+8\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}+18\,{x}^{2}+24\,x+8 \right ) +2\,\sqrt {2}{\it \_C1}-2\,{\it \_Z} \right ) \right ) \left ( 3\,x+2 \right ) \sqrt {2}}{3}} \right \} \]