\[ x (2 y(x)-x-1) y'(x)+(-y(x)+2 x-1) y(x)=0 \] ✓ Mathematica : cpu = 15.2264 (sec), leaf count = 484
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{2} x}{\sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}-\frac {\sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}{3 \sqrt [3]{2} c_1}-\frac {c_1 x+c_1}{c_1}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}{6 \sqrt [3]{2} c_1}-\frac {c_1 x+c_1}{c_1}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}{6 \sqrt [3]{2} c_1}-\frac {c_1 x+c_1}{c_1}\right \}\right \}\]
✓ Maple : cpu = 0.111 (sec), leaf count = 499
\[ \left \{ y \left ( x \right ) ={\frac {3\,\sqrt [3]{5}}{40\,{\it \_C1}}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}+{\frac {3\,x{5}^{2/3}}{40}{\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}}}-1-x,y \left ( x \right ) =-{\frac {3\,\sqrt [3]{5}}{80\,{\it \_C1}}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}-{\frac {3\,x{5}^{2/3}}{80}{\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}}}-1-x-{\frac {i}{2}}\sqrt {3} \left ( {\frac {3\,\sqrt [3]{5}}{40\,{\it \_C1}}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}-{\frac {3\,x{5}^{2/3}}{40}{\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}}} \right ) ,y \left ( x \right ) =-{\frac {3\,\sqrt [3]{5}}{80\,{\it \_C1}}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}-{\frac {3\,x{5}^{2/3}}{80}{\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}}}-1-x+{\frac {i}{2}}\sqrt {3} \left ( {\frac {3\,\sqrt [3]{5}}{40\,{\it \_C1}}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}-{\frac {3\,x{5}^{2/3}}{40}{\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}}} \right ) \right \} \]