\[ \left (x^2+y(x)^2\right ) y'(x)+2 x (y(x)+2 x)=0 \] ✓ Mathematica : cpu = 1.53613 (sec), leaf count = 370
\[\left \{\left \{y(x)\to \frac {\sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}{2 \sqrt [3]{2}}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}{2 \sqrt [3]{2}}\right \}\right \}\]
✓ Maple : cpu = 0.166 (sec), leaf count = 417
\[ \left \{ y \left ( x \right ) ={1 \left ( {\frac {1}{2}\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}-2\,{\frac {{x}^{2}{\it \_C1}}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}} \right ) {\frac {1}{\sqrt {{\it \_C1}}}}},y \left ( x \right ) ={1 \left ( -{\frac {1}{4}\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}+{{x}^{2}{\it \_C1}{\frac {1}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{2}\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}+2\,{\frac {{x}^{2}{\it \_C1}}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}} \right ) \right ) {\frac {1}{\sqrt {{\it \_C1}}}}},y \left ( x \right ) ={1 \left ( -{\frac {1}{4}\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}+{{x}^{2}{\it \_C1}{\frac {1}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}}}+{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{2}\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}+2\,{\frac {{x}^{2}{\it \_C1}}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}} \right ) \right ) {\frac {1}{\sqrt {{\it \_C1}}}}} \right \} \]