\[ \left (y(x)^2+2 y(x)+x\right ) y'(x)+y(x)^2 (y(x)+x)^2+y(x) (y(x)+1)=0 \] ✓ Mathematica : cpu = 11.4383 (sec), leaf count = 107
\[\left \{\left \{y(x)\to \frac {-\sqrt {\left (-c_1 x+x^2-1\right ){}^2+4 \left (x-c_1\right )}+c_1 x-x^2+1}{2 \left (x-c_1\right )}\right \},\left \{y(x)\to \frac {\sqrt {\left (-c_1 x+x^2-1\right ){}^2+4 \left (x-c_1\right )}+c_1 x-x^2+1}{2 \left (x-c_1\right )}\right \}\right \}\]
✓ Maple : cpu = 0.19 (sec), leaf count = 120
\[ \left \{ y \left ( x \right ) ={\frac {1}{2\,{\it \_C1}-4\,x} \left ( -{\it \_C1}\,x+2\,{x}^{2}-2+\sqrt {{{\it \_C1}}^{2}{x}^{2}-4\,{x}^{3}{\it \_C1}+4\,{x}^{4}+4\,{\it \_C1}\,x-8\,{x}^{2}-8\,{\it \_C1}+16\,x+4} \right ) },y \left ( x \right ) =-{\frac {1}{2\,{\it \_C1}-4\,x} \left ( {\it \_C1}\,x-2\,{x}^{2}+\sqrt {{{\it \_C1}}^{2}{x}^{2}-4\,{x}^{3}{\it \_C1}+4\,{x}^{4}+4\,{\it \_C1}\,x-8\,{x}^{2}-8\,{\it \_C1}+16\,x+4}+2 \right ) } \right \} \]