\[ \left (-3 x^2 y(x)+6 y(x)^2+1\right ) y'(x)-3 x y(x)^2+x=0 \] ✓ Mathematica : cpu = 0.027246 (sec), leaf count = 534
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{4 \sqrt {3} \sqrt {-54 c_1 x^6+648 c_1 x^2+432 c_1^2-27 x^8+207 x^4+32}+144 c_1-9 x^6+108 x^2}}{4\ 3^{2/3}}+\frac {6-\frac {9 x^4}{4}}{3 \sqrt [3]{3} \sqrt [3]{4 \sqrt {3} \sqrt {-54 c_1 x^6+648 c_1 x^2+432 c_1^2-27 x^8+207 x^4+32}+144 c_1-9 x^6+108 x^2}}+\frac {x^2}{4}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{4 \sqrt {3} \sqrt {-54 c_1 x^6+648 c_1 x^2+432 c_1^2-27 x^8+207 x^4+32}+144 c_1-9 x^6+108 x^2}}{8\ 3^{2/3}}-\frac {\left (1+i \sqrt {3}\right ) \left (6-\frac {9 x^4}{4}\right )}{6 \sqrt [3]{3} \sqrt [3]{4 \sqrt {3} \sqrt {-54 c_1 x^6+648 c_1 x^2+432 c_1^2-27 x^8+207 x^4+32}+144 c_1-9 x^6+108 x^2}}+\frac {x^2}{4}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{4 \sqrt {3} \sqrt {-54 c_1 x^6+648 c_1 x^2+432 c_1^2-27 x^8+207 x^4+32}+144 c_1-9 x^6+108 x^2}}{8\ 3^{2/3}}-\frac {\left (1-i \sqrt {3}\right ) \left (6-\frac {9 x^4}{4}\right )}{6 \sqrt [3]{3} \sqrt [3]{4 \sqrt {3} \sqrt {-54 c_1 x^6+648 c_1 x^2+432 c_1^2-27 x^8+207 x^4+32}+144 c_1-9 x^6+108 x^2}}+\frac {x^2}{4}\right \}\right \}\]
✓ Maple : cpu = 0.043 (sec), leaf count = 587
\[ \left \{ y \left ( x \right ) ={\frac {1}{12}\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}-12\,{\frac {1/6-1/16\,{x}^{4}}{\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}}+{\frac {{x}^{2}}{4}},y \left ( x \right ) =-{\frac {1}{24}\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}+6\,{\frac {1/6-1/16\,{x}^{4}}{\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}}+{\frac {{x}^{2}}{4}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{12}\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}+12\,{\frac {1/6-1/16\,{x}^{4}}{\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}} \right ) ,y \left ( x \right ) =-{\frac {1}{24}\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}+6\,{\frac {1/6-1/16\,{x}^{4}}{\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}}+{\frac {{x}^{2}}{4}}+{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{12}\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}+12\,{\frac {1/6-1/16\,{x}^{4}}{\sqrt [3]{-324\,{x}^{2}-432\,{\it \_C1}+27\,{x}^{6}+12\,\sqrt {-81\,{x}^{8}-162\,{\it \_C1}\,{x}^{6}+621\,{x}^{4}+1944\,{x}^{2}{\it \_C1}+1296\,{{\it \_C1}}^{2}+96}}}} \right ) \right \} \]