\[ 2 x \left (5 x^2+y(x)^2\right ) y'(x)-x^2 y(x)+y(x)^3=0 \] ✓ Mathematica : cpu = 0.0623009 (sec), leaf count = 216
\[\left \{\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,5\right ]\right \}\right \}\]
✓ Maple : cpu = 0.296 (sec), leaf count = 29
\[ \left \{ y \left ( x \right ) = \left ( {\it RootOf} \left ( {x}^{9}{\it \_C1}\,{{\it \_Z}}^{45}-{{\it \_Z}}^{18}-6\,{{\it \_Z}}^{9}-9 \right ) \right ) ^{{\frac {9}{2}}}x \right \} \]