\[ x^{-a-1} y(x)^2-x^a+y'(x)=0 \] ✓ Mathematica : cpu = 0.0657321 (sec), leaf count = 230
\[\left \{\left \{y(x)\to \frac {x^{a+1} \left (c_1 \left (\frac {1}{2} x^{-\frac {a}{2}-\frac {1}{2}} \Gamma (a+1) \left (I_{a-1}\left (2 \sqrt {x}\right )+I_{a+1}\left (2 \sqrt {x}\right )\right )-\frac {1}{2} a x^{-\frac {a}{2}-1} \Gamma (a+1) I_a\left (2 \sqrt {x}\right )\right )-\frac {1}{2} (-1)^{-a} a x^{-\frac {a}{2}-1} \Gamma (1-a) I_{-a}\left (2 \sqrt {x}\right )+\frac {1}{2} (-1)^{-a} x^{-\frac {a}{2}-\frac {1}{2}} \Gamma (1-a) \left (I_{-a-1}\left (2 \sqrt {x}\right )+I_{1-a}\left (2 \sqrt {x}\right )\right )\right )}{c_1 x^{-a/2} \Gamma (a+1) I_a\left (2 \sqrt {x}\right )+(-1)^{-a} x^{-a/2} \Gamma (1-a) I_{-a}\left (2 \sqrt {x}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.088 (sec), leaf count = 81
\[ \left \{ y \left ( x \right ) =-{{\it \_C1}\,{x}^{a+1}{{\sl K}_{a+1}\left (2\,\sqrt {x}\right )}{\frac {1}{\sqrt {x}}} \left ( {{\sl K}_{a}\left (2\,\sqrt {x}\right )}{\it \_C1}+{{\sl I}_{a}\left (2\,\sqrt {x}\right )} \right ) ^{-1}}+{{x}^{a+1}{{\sl I}_{a+1}\left (2\,\sqrt {x}\right )}{\frac {1}{\sqrt {x}}} \left ( {{\sl K}_{a}\left (2\,\sqrt {x}\right )}{\it \_C1}+{{\sl I}_{a}\left (2\,\sqrt {x}\right )} \right ) ^{-1}} \right \} \]