\[ \left (x^2 y(x)^2+x\right ) y'(x)+y(x)=0 \] ✓ Mathematica : cpu = 0.0234049 (sec), leaf count = 70
\[\left \{\left \{y(x)\to \frac {c_1 x-\sqrt {x} \sqrt {c_1^2 x+4}}{2 x}\right \},\left \{y(x)\to \frac {c_1 x+\sqrt {x} \sqrt {c_1^2 x+4}}{2 x}\right \}\right \}\]
✓ Maple : cpu = 0.141 (sec), leaf count = 137
\[ \left \{ y \left ( x \right ) =-{\frac {1}{2\,{\it \_C1}\,x}\sqrt {-2\,x{\it \_C1}\, \left ( -2\,{\it \_C1}-x+\sqrt {4\,{\it \_C1}\,x+{x}^{2}} \right ) }},y \left ( x \right ) ={\frac {1}{2\,{\it \_C1}\,x}\sqrt {-2\,x{\it \_C1}\, \left ( -2\,{\it \_C1}-x+\sqrt {4\,{\it \_C1}\,x+{x}^{2}} \right ) }},y \left ( x \right ) =-{\frac {\sqrt {2}}{2\,{\it \_C1}\,x}\sqrt {x{\it \_C1}\, \left ( 2\,{\it \_C1}+x+\sqrt {4\,{\it \_C1}\,x+{x}^{2}} \right ) }},y \left ( x \right ) ={\frac {\sqrt {2}}{2\,{\it \_C1}\,x}\sqrt {x{\it \_C1}\, \left ( 2\,{\it \_C1}+x+\sqrt {4\,{\it \_C1}\,x+{x}^{2}} \right ) }} \right \} \]