\[ f(x) y(x)^2+g(x) y(x)+y'(x)=0 \] ✓ Mathematica : cpu = 0.510305 (sec), leaf count = 51
\[\left \{\left \{y(x)\to \frac {e^{\int _1^x -g(K[1]) \, dK[1]}}{c_1-\int _1^x f(K[2]) \left (-e^{\int _1^{K[2]} -g(K[1]) \, dK[1]}\right ) \, dK[2]}\right \}\right \}\]
✓ Maple : cpu = 0.029 (sec), leaf count = 28
\[ \left \{ y \left ( x \right ) ={\frac {{{\rm e}^{\int \!-g \left ( x \right ) \,{\rm d}x}}}{\int \!{{\rm e}^{\int \!-g \left ( x \right ) \,{\rm d}x}}f \left ( x \right ) \,{\rm d}x+{\it \_C1}}} \right \} \]