\[ a y(x)+b+y'(x)^2-4 y(x)^3=0 \] ✓ Mathematica : cpu = 0.00487112 (sec), leaf count = 27
\[\left \{\left \{y(x)\to \wp \left (x-c_1;a,b\right )\right \},\left \{y(x)\to \wp \left (x+c_1;a,b\right )\right \}\right \}\]
✓ Maple : cpu = 0.638 (sec), leaf count = 271
\[ \left \{ y \left ( x \right ) ={\frac {1}{6}\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}+{\frac {a}{2}{\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}},y \left ( x \right ) =-{\frac {1}{12}\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}-{\frac {a}{4}{\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{6}\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}-{\frac {a}{2}{\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}} \right ) ,y \left ( x \right ) =-{\frac {1}{12}\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}-{\frac {a}{4}{\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}}+{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{6}\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}-{\frac {a}{2}{\frac {1}{\sqrt [3]{27\,b+3\,\sqrt {-3\,{a}^{3}+81\,{b}^{2}}}}}} \right ) ,y \left ( x \right ) ={\it WeierstrassP} \left ( x+{\it \_C1},a,b \right ) \right \} \]