\[ x y'(x)^2+4 y'(x)-2 y(x)=0 \] ✓ Mathematica : cpu = 31.5645 (sec), leaf count = 80
\[\text {Solve}\left [\left \{x=-\frac {2 (2 \text {K$\$$1240300}-y(\text {K$\$$1240300}))}{\text {K$\$$1240300}^2},y(x)=c_1 e^{-4 \left (\frac {1}{2} \log (2-\text {K$\$$1240300})-\frac {\log (\text {K$\$$1240300})}{2}\right )}+4 e^{-4 \left (\frac {1}{2} \log (2-\text {K$\$$1240300})-\frac {\log (\text {K$\$$1240300})}{2}\right )} \left (\frac {2}{\text {K$\$$1240300}}+\log (\text {K$\$$1240300})\right )\right \},\{y(x),\text {K$\$$1240300}\}\right ]\]
✓ Maple : cpu = 0.062 (sec), leaf count = 64
\[ \left \{ y \left ( x \right ) ={\frac {x{{\rm e}^{2\,{\it RootOf} \left ( -x{{\rm e}^{2\,{\it \_Z}}}+4\,x{{\rm e}^{{\it \_Z}}}-4\,{{\rm e}^{{\it \_Z}}}+{\it \_C1}+8\,{\it \_Z}-4\,x \right ) }}}{2}}+2\,{{\rm e}^{{\it RootOf} \left ( -x{{\rm e}^{2\,{\it \_Z}}}+4\,x{{\rm e}^{{\it \_Z}}}-4\,{{\rm e}^{{\it \_Z}}}+{\it \_C1}+8\,{\it \_Z}-4\,x \right ) }} \right \} \]