\[ a y(x) y'(x)+b x+x y'(x)^2=0 \] ✓ Mathematica : cpu = 0.384748 (sec), leaf count = 223
\[\left \{\text {Solve}\left [\frac {-2 a \tan ^{-1}\left (\frac {a y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )+(a+2) \left (2 \tan ^{-1}\left (\frac {(a+2) y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )-i \log \left (\frac {(a+1) y(x)^2}{x^2}+b\right )\right )}{8 (a+1)}=c_1+\frac {1}{2} i \log (x),y(x)\right ],\text {Solve}\left [\frac {-2 a \tan ^{-1}\left (\frac {a y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )+(a+2) \left (2 \tan ^{-1}\left (\frac {(a+2) y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )+i \log \left (\frac {(a+1) y(x)^2}{x^2}+b\right )\right )}{8 (a+1)}=c_1-\frac {1}{2} i \log (x),y(x)\right ]\right \}\]
✓ Maple : cpu = 0.082 (sec), leaf count = 224
\[ \left \{ {\frac {{\it \_C1}}{x} \left ( -ay \left ( x \right ) +\sqrt {{a}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,b{x}^{2}} \right ) \left ( -{\frac {a}{2\,{x}^{2}} \left ( -{a}^{2} \left ( y \left ( x \right ) \right ) ^{2}+\sqrt {{a}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,b{x}^{2}}ay \left ( x \right ) -a \left ( y \left ( x \right ) \right ) ^{2}+2\,b{x}^{2}+\sqrt {{a}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,b{x}^{2}}y \left ( x \right ) \right ) } \right ) ^{-{\frac {a+2}{2\,a+2}}}}+x=0,{\frac {{\it \_C1}}{x} \left ( ay \left ( x \right ) +\sqrt {{a}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,b{x}^{2}} \right ) \left ( {\frac {a}{2\,{x}^{2}} \left ( {a}^{2} \left ( y \left ( x \right ) \right ) ^{2}+\sqrt {{a}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,b{x}^{2}}ay \left ( x \right ) +a \left ( y \left ( x \right ) \right ) ^{2}-2\,b{x}^{2}+\sqrt {{a}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,b{x}^{2}}y \left ( x \right ) \right ) } \right ) ^{-{\frac {a+2}{2\,a+2}}}}+x=0 \right \} \]