\[ x^2 y'(x)^2-4 x (y(x)+2) y'(x)+4 y(x) (y(x)+2)=0 \] ✓ Mathematica : cpu = 0.0704787 (sec), leaf count = 65
\[\left \{\left \{y(x)\to -e^{-c_1} x \left (2 \sqrt {2} e^{\frac {c_1}{2}}-x\right )\right \},\left \{y(x)\to e^{\frac {c_1}{2}} x \left (e^{\frac {c_1}{2}} x-2 \sqrt {2}\right )\right \}\right \}\]
✓ Maple : cpu = 1.138 (sec), leaf count = 121
\[ \left \{ y \left ( x \right ) =-2,y \left ( x \right ) ={\frac {{x}^{2}}{{\it \_C1}} \left ( -2\,{\frac {\sqrt {2}\sqrt {{x}^{2}{\it \_C1}}}{{x}^{2}}}+1 \right ) },y \left ( x \right ) ={\frac {{x}^{2}}{{\it \_C1}} \left ( 2\,{\frac {\sqrt {2}\sqrt {{x}^{2}{\it \_C1}}}{{x}^{2}}}+1 \right ) },y \left ( x \right ) =-{\frac {2\,{\it \_C1}\, \left ( \sqrt {2}x-4\,{\it \_C1} \right ) +8\,{{\it \_C1}}^{2}-{x}^{2}}{{{\it \_C1}}^{2}}},y \left ( x \right ) =-{\frac {-2\,{\it \_C1}\, \left ( \sqrt {2}x+4\,{\it \_C1} \right ) +8\,{{\it \_C1}}^{2}-{x}^{2}}{{{\it \_C1}}^{2}}} \right \} \]