[next] [prev] [prev-tail] [tail] [up]
(a2−1)x2y′(x)2+a2x2+2xy(x)y′(x)−y(x)2=0 ✓ Mathematica : cpu = 0.585785 (sec), leaf count = 395
{Solve[a(−log((a2−1)(aa2−y(x)2x2−1+a2−iy(x)x−1)a3(y(x)x−i))+log(−(a2−1)(aa2−y(x)2x2−1+a2+iy(x)x−1)a3(y(x)x+i))+log(y(x)2x2+1))−2itan−1(y(x)xa2−y(x)2x2−1)2(a2−1)=alog(x−a2x)1−a2+c1,y(x)],Solve[2itan−1(y(x)xa2−y(x)2x2−1)+a(log(−(a2−1)(aa2−y(x)2x2−1+a2−iy(x)x−1)a3(y(x)x−i))−log((a2−1)(aa2−y(x)2x2−1+a2+iy(x)x−1)a3(y(x)x+i))+log(y(x)2x2+1))2(a2−1)=alog(x−a2x)1−a2+c1,y(x)]}
✓ Maple : cpu = 0.736 (sec), leaf count = 229
{ln(x)−1a−a2arctan(a2y(x)x1−a21−a2x2−x2−(y(x))2x2)+12ln((y(x))2+x2x2)+1aln(1x(−a2x2+x2+(y(x))2x2x+y(x)))−_C1=0,ln(x)+1a−a2arctan(a2y(x)x1−a21−a2x2−x2−(y(x))2x2)+12ln((y(x))2+x2x2)−1aln(1x(−a2x2+x2+(y(x))2x2x+y(x)))−_C1=0}
[next] [prev] [prev-tail] [front] [up]