\[ -x^{-a} y(x)+a x^{-a-1}-x^{-2 a}-x^a y(x)^3+y'(x)+3 y(x)^2=0 \] ✓ Mathematica : cpu = 0.245496 (sec), leaf count = 258
\[\left \{\left \{y(x)\to x^{-a}-\frac {e^{-\frac {2 x^{1-a}}{1-a}}}{\sqrt {c_1-\frac {2 x \left (\frac {4^{\frac {a+1}{a-1}} x \left (\frac {x^{1-a}}{1-a}\right )^{\frac {2}{a-1}} \Gamma \left (-\frac {2}{a-1},-\frac {4 x^{1-a}}{a-1}\right )}{a-1}+e^{\frac {4 x^{1-a}}{a-1}} x^a\right )}{a+1}}}\right \},\left \{y(x)\to \frac {e^{-\frac {2 x^{1-a}}{1-a}}}{\sqrt {c_1-\frac {2 x \left (\frac {4^{\frac {a+1}{a-1}} x \left (\frac {x^{1-a}}{1-a}\right )^{\frac {2}{a-1}} \Gamma \left (-\frac {2}{a-1},-\frac {4 x^{1-a}}{a-1}\right )}{a-1}+e^{\frac {4 x^{1-a}}{a-1}} x^a\right )}{a+1}}}+x^{-a}\right \}\right \}\]
✓ Maple : cpu = 0.129 (sec), leaf count = 1052
\[ \left \{ y \left ( x \right ) =-{1{{\rm e}^{2\,{\frac {x}{ \left ( a-1 \right ) {x}^{a}}}}}{\frac {1}{\sqrt {{\it \_C1}-2\,{\frac {1}{1-a}{2}^{-2\,{\frac {a}{1-a}}-2\, \left ( 1-a \right ) ^{-1}} \left ( \left ( 1-a \right ) ^{-1} \right ) ^{-{\frac {a}{1-a}}- \left ( 1-a \right ) ^{-1}} \left ( {\frac {1-a}{-3+a}{2}^{-3+2\,{\frac {a}{1-a}}+2\, \left ( 1-a \right ) ^{-1}+2\, \left ( a-1 \right ) ^{-1}}{x}^{-{\frac {{a}^{2}}{1-a}}+ \left ( 1-a \right ) ^{-1}-1+a} \left ( \left ( 1-a \right ) ^{-1} \right ) ^{{\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1}} \left ( -4\,{\frac {{x}^{1-a}{a}^{2}}{1-a}}+8\,{\frac {a{x}^{1-a}}{1-a}}-4\,{\frac {{x}^{1-a}}{1-a}}+2\,a-2 \right ) \left ( {\frac {{x}^{1-a}}{1-a}} \right ) ^{ \left ( a-1 \right ) ^{-1}}{{\rm e}^{-2\,{\frac {{x}^{1-a}}{1-a}}}}{{\sl M}_{-{\frac {a+1}{a-1}}+ \left ( a-1 \right ) ^{-1},\,- \left ( a-1 \right ) ^{-1}+1/2}\left (4\,{\frac {{x}^{1-a}}{1-a}}\right )} \left ( {\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1} \right ) ^{-1}}-{\frac {1-a}{-3+a}{2}^{-1+2\,{\frac {a}{1-a}}+2\, \left ( 1-a \right ) ^{-1}+2\, \left ( a-1 \right ) ^{-1}}{x}^{-{\frac {{a}^{2}}{1-a}}+ \left ( 1-a \right ) ^{-1}-1+a} \left ( \left ( 1-a \right ) ^{-1} \right ) ^{{\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1}} \left ( {\frac {{x}^{1-a}}{1-a}} \right ) ^{ \left ( a-1 \right ) ^{-1}}{{\rm e}^{-2\,{\frac {{x}^{1-a}}{1-a}}}}{{\sl M}_{-{\frac {a+1}{a-1}}+ \left ( a-1 \right ) ^{-1}+1,\,- \left ( a-1 \right ) ^{-1}+1/2}\left (4\,{\frac {{x}^{1-a}}{1-a}}\right )} \left ( {\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1} \right ) ^{-1}} \right ) }}}}}+ \left ( {x}^{a} \right ) ^{-1},y \left ( x \right ) ={1{{\rm e}^{2\,{\frac {x}{ \left ( a-1 \right ) {x}^{a}}}}}{\frac {1}{\sqrt {{\it \_C1}-2\,{\frac {1}{1-a}{2}^{-2\,{\frac {a}{1-a}}-2\, \left ( 1-a \right ) ^{-1}} \left ( \left ( 1-a \right ) ^{-1} \right ) ^{-{\frac {a}{1-a}}- \left ( 1-a \right ) ^{-1}} \left ( {\frac {1-a}{-3+a}{2}^{-3+2\,{\frac {a}{1-a}}+2\, \left ( 1-a \right ) ^{-1}+2\, \left ( a-1 \right ) ^{-1}}{x}^{-{\frac {{a}^{2}}{1-a}}+ \left ( 1-a \right ) ^{-1}-1+a} \left ( \left ( 1-a \right ) ^{-1} \right ) ^{{\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1}} \left ( -4\,{\frac {{x}^{1-a}{a}^{2}}{1-a}}+8\,{\frac {a{x}^{1-a}}{1-a}}-4\,{\frac {{x}^{1-a}}{1-a}}+2\,a-2 \right ) \left ( {\frac {{x}^{1-a}}{1-a}} \right ) ^{ \left ( a-1 \right ) ^{-1}}{{\rm e}^{-2\,{\frac {{x}^{1-a}}{1-a}}}}{{\sl M}_{-{\frac {a+1}{a-1}}+ \left ( a-1 \right ) ^{-1},\,- \left ( a-1 \right ) ^{-1}+1/2}\left (4\,{\frac {{x}^{1-a}}{1-a}}\right )} \left ( {\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1} \right ) ^{-1}}-{\frac {1-a}{-3+a}{2}^{-1+2\,{\frac {a}{1-a}}+2\, \left ( 1-a \right ) ^{-1}+2\, \left ( a-1 \right ) ^{-1}}{x}^{-{\frac {{a}^{2}}{1-a}}+ \left ( 1-a \right ) ^{-1}-1+a} \left ( \left ( 1-a \right ) ^{-1} \right ) ^{{\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1}} \left ( {\frac {{x}^{1-a}}{1-a}} \right ) ^{ \left ( a-1 \right ) ^{-1}}{{\rm e}^{-2\,{\frac {{x}^{1-a}}{1-a}}}}{{\sl M}_{-{\frac {a+1}{a-1}}+ \left ( a-1 \right ) ^{-1}+1,\,- \left ( a-1 \right ) ^{-1}+1/2}\left (4\,{\frac {{x}^{1-a}}{1-a}}\right )} \left ( {\frac {a}{1-a}}+ \left ( 1-a \right ) ^{-1} \right ) ^{-1}} \right ) }}}}}+ \left ( {x}^{a} \right ) ^{-1} \right \} \]