2.479   ODE No. 479

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ \text {a0} x+y'(x) (\text {a1} x+\text {b1} y(x)+\text {c1})+y'(x)^2 (\text {a2} x+\text {b2} y(x)+\text {c2})+\text {b0} y(x)+\text {c0}=0 \] Mathematica : cpu = 300.03 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.307 (sec), leaf count = 929

\[ \left \{ x-{{\rm e}^{\int ^{{\frac {1}{2\,{\it b2}\,y \left ( x \right ) +2\,{\it a2}\,x+2\,{\it c2}} \left ( -{\it a1}\,x-{\it b1}\,y \left ( x \right ) -{\it c1}+\sqrt {-4\,{\it a0}\,{\it a2}\,{x}^{2}-4\,{\it a0}\,{\it b2}\,xy \left ( x \right ) +{{\it a1}}^{2}{x}^{2}+2\,{\it a1}\,{\it b1}\,xy \left ( x \right ) -4\,{\it a2}\,{\it b0}\,xy \left ( x \right ) -4\,{\it b0}\,{\it b2}\, \left ( y \left ( x \right ) \right ) ^{2}+{{\it b1}}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,{\it a0}\,{\it c2}\,x+2\,{\it a1}\,{\it c1}\,x-4\,{\it a2}\,{\it c0}\,x-4\,{\it b0}\,{\it c2}\,y \left ( x \right ) +2\,{\it b1}\,{\it c1}\,y \left ( x \right ) -4\,{\it b2}\,{\it c0}\,y \left ( x \right ) -4\,{\it c0}\,{\it c2}+{{\it c1}}^{2}} \right ) }}\!{\frac {{{\it \_a}}^{2}{\it a1}\,{\it b2}-{{\it \_a}}^{2}{\it a2}\,{\it b1}+2\,{\it \_a}\,{\it a0}\,{\it b2}-2\,{\it \_a}\,{\it a2}\,{\it b0}+{\it a0}\,{\it b1}-{\it a1}\,{\it b0}}{ \left ( {{\it \_a}}^{3}{\it b2}+{{\it \_a}}^{2}{\it a2}+{{\it \_a}}^{2}{\it b1}+{\it \_a}\,{\it a1}+{\it \_a}\,{\it b0}+{\it a0} \right ) \left ( {{\it \_a}}^{2}{\it b2}+{\it \_a}\,{\it b1}+{\it b0} \right ) }}{d{\it \_a}}}} \left ( \int ^{{\frac {1}{2\,{\it b2}\,y \left ( x \right ) +2\,{\it a2}\,x+2\,{\it c2}} \left ( -{\it a1}\,x-{\it b1}\,y \left ( x \right ) -{\it c1}+\sqrt {-4\,{\it a0}\,{\it a2}\,{x}^{2}-4\,{\it a0}\,{\it b2}\,xy \left ( x \right ) +{{\it a1}}^{2}{x}^{2}+2\,{\it a1}\,{\it b1}\,xy \left ( x \right ) -4\,{\it a2}\,{\it b0}\,xy \left ( x \right ) -4\,{\it b0}\,{\it b2}\, \left ( y \left ( x \right ) \right ) ^{2}+{{\it b1}}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,{\it a0}\,{\it c2}\,x+2\,{\it a1}\,{\it c1}\,x-4\,{\it a2}\,{\it c0}\,x-4\,{\it b0}\,{\it c2}\,y \left ( x \right ) +2\,{\it b1}\,{\it c1}\,y \left ( x \right ) -4\,{\it b2}\,{\it c0}\,y \left ( x \right ) -4\,{\it c0}\,{\it c2}+{{\it c1}}^{2}} \right ) }}\!-{\frac {{{\it \_b}}^{2}{\it b1}\,{\it c2}-{{\it \_b}}^{2}{\it b2}\,{\it c1}+2\,{\it \_b}\,{\it b0}\,{\it c2}-2\,{\it \_b}\,{\it b2}\,{\it c0}+{\it b0}\,{\it c1}-{\it b1}\,{\it c0}}{ \left ( {{\it \_b}}^{2}{\it b2}+{\it \_b}\,{\it b1}+{\it b0} \right ) \left ( {{\it \_b}}^{3}{\it b2}+{{\it \_b}}^{2}{\it a2}+{{\it \_b}}^{2}{\it b1}+{\it \_b}\,{\it a1}+{\it \_b}\,{\it b0}+{\it a0} \right ) }{{\rm e}^{-\int \!{\frac {{{\it \_b}}^{2}{\it a1}\,{\it b2}-{{\it \_b}}^{2}{\it a2}\,{\it b1}+2\,{\it \_b}\,{\it a0}\,{\it b2}-2\,{\it \_b}\,{\it a2}\,{\it b0}+{\it a0}\,{\it b1}-{\it a1}\,{\it b0}}{ \left ( {{\it \_b}}^{2}{\it b2}+{\it \_b}\,{\it b1}+{\it b0} \right ) \left ( {{\it \_b}}^{3}{\it b2}+{{\it \_b}}^{2}{\it a2}+{{\it \_b}}^{2}{\it b1}+{\it \_b}\,{\it a1}+{\it \_b}\,{\it b0}+{\it a0} \right ) }}\,{\rm d}{\it \_b}}}}{d{\it \_b}}+{\it \_C1} \right ) =0,x-{{\rm e}^{\int ^{-{\frac {1}{2\,{\it b2}\,y \left ( x \right ) +2\,{\it a2}\,x+2\,{\it c2}} \left ( {\it a1}\,x+{\it b1}\,y \left ( x \right ) +\sqrt {-4\,{\it a0}\,{\it a2}\,{x}^{2}-4\,{\it a0}\,{\it b2}\,xy \left ( x \right ) +{{\it a1}}^{2}{x}^{2}+2\,{\it a1}\,{\it b1}\,xy \left ( x \right ) -4\,{\it a2}\,{\it b0}\,xy \left ( x \right ) -4\,{\it b0}\,{\it b2}\, \left ( y \left ( x \right ) \right ) ^{2}+{{\it b1}}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,{\it a0}\,{\it c2}\,x+2\,{\it a1}\,{\it c1}\,x-4\,{\it a2}\,{\it c0}\,x-4\,{\it b0}\,{\it c2}\,y \left ( x \right ) +2\,{\it b1}\,{\it c1}\,y \left ( x \right ) -4\,{\it b2}\,{\it c0}\,y \left ( x \right ) -4\,{\it c0}\,{\it c2}+{{\it c1}}^{2}}+{\it c1} \right ) }}\!{\frac {{{\it \_a}}^{2}{\it a1}\,{\it b2}-{{\it \_a}}^{2}{\it a2}\,{\it b1}+2\,{\it \_a}\,{\it a0}\,{\it b2}-2\,{\it \_a}\,{\it a2}\,{\it b0}+{\it a0}\,{\it b1}-{\it a1}\,{\it b0}}{ \left ( {{\it \_a}}^{3}{\it b2}+{{\it \_a}}^{2}{\it a2}+{{\it \_a}}^{2}{\it b1}+{\it \_a}\,{\it a1}+{\it \_a}\,{\it b0}+{\it a0} \right ) \left ( {{\it \_a}}^{2}{\it b2}+{\it \_a}\,{\it b1}+{\it b0} \right ) }}{d{\it \_a}}}} \left ( \int ^{-{\frac {1}{2\,{\it b2}\,y \left ( x \right ) +2\,{\it a2}\,x+2\,{\it c2}} \left ( {\it a1}\,x+{\it b1}\,y \left ( x \right ) +\sqrt {-4\,{\it a0}\,{\it a2}\,{x}^{2}-4\,{\it a0}\,{\it b2}\,xy \left ( x \right ) +{{\it a1}}^{2}{x}^{2}+2\,{\it a1}\,{\it b1}\,xy \left ( x \right ) -4\,{\it a2}\,{\it b0}\,xy \left ( x \right ) -4\,{\it b0}\,{\it b2}\, \left ( y \left ( x \right ) \right ) ^{2}+{{\it b1}}^{2} \left ( y \left ( x \right ) \right ) ^{2}-4\,{\it a0}\,{\it c2}\,x+2\,{\it a1}\,{\it c1}\,x-4\,{\it a2}\,{\it c0}\,x-4\,{\it b0}\,{\it c2}\,y \left ( x \right ) +2\,{\it b1}\,{\it c1}\,y \left ( x \right ) -4\,{\it b2}\,{\it c0}\,y \left ( x \right ) -4\,{\it c0}\,{\it c2}+{{\it c1}}^{2}}+{\it c1} \right ) }}\!-{\frac {{{\it \_b}}^{2}{\it b1}\,{\it c2}-{{\it \_b}}^{2}{\it b2}\,{\it c1}+2\,{\it \_b}\,{\it b0}\,{\it c2}-2\,{\it \_b}\,{\it b2}\,{\it c0}+{\it b0}\,{\it c1}-{\it b1}\,{\it c0}}{ \left ( {{\it \_b}}^{2}{\it b2}+{\it \_b}\,{\it b1}+{\it b0} \right ) \left ( {{\it \_b}}^{3}{\it b2}+{{\it \_b}}^{2}{\it a2}+{{\it \_b}}^{2}{\it b1}+{\it \_b}\,{\it a1}+{\it \_b}\,{\it b0}+{\it a0} \right ) }{{\rm e}^{-\int \!{\frac {{{\it \_b}}^{2}{\it a1}\,{\it b2}-{{\it \_b}}^{2}{\it a2}\,{\it b1}+2\,{\it \_b}\,{\it a0}\,{\it b2}-2\,{\it \_b}\,{\it a2}\,{\it b0}+{\it a0}\,{\it b1}-{\it a1}\,{\it b0}}{ \left ( {{\it \_b}}^{2}{\it b2}+{\it \_b}\,{\it b1}+{\it b0} \right ) \left ( {{\it \_b}}^{3}{\it b2}+{{\it \_b}}^{2}{\it a2}+{{\it \_b}}^{2}{\it b1}+{\it \_b}\,{\it a1}+{\it \_b}\,{\it b0}+{\it a0} \right ) }}\,{\rm d}{\it \_b}}}}{d{\it \_b}}+{\it \_C1} \right ) =0 \right \} \]