\[ 9 \left (x^2-1\right ) y(x)^4 y'(x)^2-4 x^2-6 x y(x)^5 y'(x)=0 \] ✓ Mathematica : cpu = 19.0001 (sec), leaf count = 817
\[\left \{\left \{y(x)\to -\sqrt [3]{-2} \sqrt [6]{x^2-1} \sqrt [3]{\sinh \left (\frac {1}{2} \left (6 c_1-\int \frac {\left (x^2-1\right )^{5/6} (\log (x-1)-\log (x+1))}{(x-1)^{5/6} (x+1)^{5/6}} \, dx+\frac {x ((x-1) (x+1))^{5/6} \log (x-1)}{(x-1)^{5/6} (x+1)^{5/6}}-\frac {x ((x-1) (x+1))^{5/6} \log (x+1)}{(x-1)^{5/6} (x+1)^{5/6}}\right )\right )}\right \},\left \{y(x)\to \sqrt [3]{2} \sqrt [6]{x^2-1} \sqrt [3]{\sinh \left (\frac {1}{2} \left (6 c_1-\int \frac {\left (x^2-1\right )^{5/6} (\log (x-1)-\log (x+1))}{(x-1)^{5/6} (x+1)^{5/6}} \, dx+\frac {x ((x-1) (x+1))^{5/6} \log (x-1)}{(x-1)^{5/6} (x+1)^{5/6}}-\frac {x ((x-1) (x+1))^{5/6} \log (x+1)}{(x-1)^{5/6} (x+1)^{5/6}}\right )\right )}\right \},\left \{y(x)\to (-1)^{2/3} \sqrt [3]{2} \sqrt [6]{x^2-1} \sqrt [3]{\sinh \left (\frac {1}{2} \left (6 c_1-\int \frac {\left (x^2-1\right )^{5/6} (\log (x-1)-\log (x+1))}{(x-1)^{5/6} (x+1)^{5/6}} \, dx+\frac {x ((x-1) (x+1))^{5/6} \log (x-1)}{(x-1)^{5/6} (x+1)^{5/6}}-\frac {x ((x-1) (x+1))^{5/6} \log (x+1)}{(x-1)^{5/6} (x+1)^{5/6}}\right )\right )}\right \},\left \{y(x)\to -\sqrt [3]{-2} \sqrt [6]{x^2-1} \sqrt [3]{\sinh \left (\frac {1}{2} \left (6 c_1+\int \frac {\left (x^2-1\right )^{5/6} (\log (x-1)-\log (x+1))}{(x-1)^{5/6} (x+1)^{5/6}} \, dx-\frac {x ((x-1) (x+1))^{5/6} \log (x-1)}{(x-1)^{5/6} (x+1)^{5/6}}+\frac {x ((x-1) (x+1))^{5/6} \log (x+1)}{(x-1)^{5/6} (x+1)^{5/6}}\right )\right )}\right \},\left \{y(x)\to \sqrt [3]{2} \sqrt [6]{x^2-1} \sqrt [3]{\sinh \left (\frac {1}{2} \left (6 c_1+\int \frac {\left (x^2-1\right )^{5/6} (\log (x-1)-\log (x+1))}{(x-1)^{5/6} (x+1)^{5/6}} \, dx-\frac {x ((x-1) (x+1))^{5/6} \log (x-1)}{(x-1)^{5/6} (x+1)^{5/6}}+\frac {x ((x-1) (x+1))^{5/6} \log (x+1)}{(x-1)^{5/6} (x+1)^{5/6}}\right )\right )}\right \},\left \{y(x)\to (-1)^{2/3} \sqrt [3]{2} \sqrt [6]{x^2-1} \sqrt [3]{\sinh \left (\frac {1}{2} \left (6 c_1+\int \frac {\left (x^2-1\right )^{5/6} (\log (x-1)-\log (x+1))}{(x-1)^{5/6} (x+1)^{5/6}} \, dx-\frac {x ((x-1) (x+1))^{5/6} \log (x-1)}{(x-1)^{5/6} (x+1)^{5/6}}+\frac {x ((x-1) (x+1))^{5/6} \log (x+1)}{(x-1)^{5/6} (x+1)^{5/6}}\right )\right )}\right \}\right \}\]
✓ Maple : cpu = 1.405 (sec), leaf count = 245
\[ \left \{ y \left ( x \right ) =\sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) = \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) \sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) = \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) \sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) = \left ( {\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) \sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) = \left ( {\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) \sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) =-\sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) ={\frac {1}{2\,{\it \_C1}}\sqrt [3]{ \left ( -16\,{{\it \_C1}}^{2}+4\,{x}^{2}-4 \right ) {{\it \_C1}}^{2}}},y \left ( x \right ) =-{\frac {1}{4\,{\it \_C1}}\sqrt [3]{ \left ( -16\,{{\it \_C1}}^{2}+4\,{x}^{2}-4 \right ) {{\it \_C1}}^{2}}}-{\frac {{\frac {i}{4}}\sqrt {3}}{{\it \_C1}}\sqrt [3]{ \left ( -16\,{{\it \_C1}}^{2}+4\,{x}^{2}-4 \right ) {{\it \_C1}}^{2}}},y \left ( x \right ) =-{\frac {1}{4\,{\it \_C1}}\sqrt [3]{ \left ( -16\,{{\it \_C1}}^{2}+4\,{x}^{2}-4 \right ) {{\it \_C1}}^{2}}}+{\frac {{\frac {i}{4}}\sqrt {3}}{{\it \_C1}}\sqrt [3]{ \left ( -16\,{{\it \_C1}}^{2}+4\,{x}^{2}-4 \right ) {{\it \_C1}}^{2}}} \right \} \]