\[ y'(x)=\frac {x F\left (\frac {y(x)^2-b}{x^2}\right )}{y(x)} \] ✓ Mathematica : cpu = 18.0583 (sec), leaf count = 233
\[\text {Solve}\left [\int _1^{y(x)} \left (-\int _1^x \left (\frac {K[1] F\left (\frac {K[2]^2-b}{K[1]^2}\right ) \left (2 K[2] F'\left (\frac {K[2]^2-b}{K[1]^2}\right )-2 K[2]\right )}{\left (K[1]^2 F\left (\frac {K[2]^2-b}{K[1]^2}\right )-K[2]^2+b\right )^2}-\frac {2 K[2] F'\left (\frac {K[2]^2-b}{K[1]^2}\right )}{K[1] \left (K[1]^2 F\left (\frac {K[2]^2-b}{K[1]^2}\right )-K[2]^2+b\right )}\right ) \, dK[1]-\frac {K[2]}{x^2 \left (-F\left (\frac {K[2]^2-b}{x^2}\right )\right )+K[2]^2-b}\right ) \, dK[2]+\int _1^x -\frac {K[1] F\left (\frac {y(x)^2-b}{K[1]^2}\right )}{K[1]^2 F\left (\frac {y(x)^2-b}{K[1]^2}\right )+b-y(x)^2} \, dK[1]=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.151 (sec), leaf count = 67
\[ \left \{ y \left ( x \right ) =\sqrt {{\it RootOf} \left ( -2\,\ln \left ( x \right ) +\int ^{{\it \_Z}}\! \left ( F \left ( {\it \_a} \right ) -{\it \_a} \right ) ^{-1}{d{\it \_a}}+2\,{\it \_C1} \right ) {x}^{2}+b},y \left ( x \right ) =-\sqrt {{\it RootOf} \left ( -2\,\ln \left ( x \right ) +\int ^{{\it \_Z}}\! \left ( F \left ( {\it \_a} \right ) -{\it \_a} \right ) ^{-1}{d{\it \_a}}+2\,{\it \_C1} \right ) {x}^{2}+b} \right \} \]