\[ y'(x)=\frac {(y(x) \log (x)-1)^2}{x} \] ✓ Mathematica : cpu = 0.755287 (sec), leaf count = 25
\[\left \{\left \{y(x)\to \frac {\tan \left (c_1+\log (x)\right )}{\log (x) \tan \left (c_1+\log (x)\right )+1}\right \}\right \}\]
✓ Maple : cpu = 0.202 (sec), leaf count = 39
\[ \left \{ y \left ( x \right ) ={\frac {\sin \left ( \ln \left ( x \right ) \right ) {\it \_C1}+\cos \left ( \ln \left ( x \right ) \right ) }{ \left ( \sin \left ( \ln \left ( x \right ) \right ) {\it \_C1}+\cos \left ( \ln \left ( x \right ) \right ) \right ) \ln \left ( x \right ) +\cos \left ( \ln \left ( x \right ) \right ) {\it \_C1}-\sin \left ( \ln \left ( x \right ) \right ) }} \right \} \]