\[ y'(x)=\frac {1}{2} i x y(x) \left (-2 \sqrt {4 \log (a)-x^2+4 \log (y(x))}+i\right ) \] ✓ Mathematica : cpu = 0.337113 (sec), leaf count = 99
\[\text {Solve}\left [-\log (y(x))+\frac {1}{4} \left (-\frac {1}{2} \log \left (4 \log (a)-x^2+4 \log (y(x))+1\right )+i \sqrt {4 \log (a)-x^2+4 \log (y(x))}-i \tan ^{-1}\left (\sqrt {4 \log (a)-x^2+4 \log (y(x))}\right )+4 \log (a)-x^2+4 \log (y(x))\right )=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.351 (sec), leaf count = 70
\[ \left \{ -{\frac {1}{2}\sqrt {-{x}^{2}+4\,\ln \left ( a \right ) +4\,\ln \left ( y \left ( x \right ) \right ) }}+{\frac {1}{2}\arctan \left ( \sqrt {-{x}^{2}+4\,\ln \left ( a \right ) +4\,\ln \left ( y \left ( x \right ) \right ) } \right ) }-{\frac {i}{4}}\ln \left ( {x}^{2}-4\,\ln \left ( a \right ) -4\,\ln \left ( y \left ( x \right ) \right ) -1 \right ) -{\frac {i}{2}}{x}^{2}-{\it \_C1}=0 \right \} \]