\[ y'(x)=\frac {y(x) \left (x^3 y(x)+x^2 y(x) \log (x)-x^2-x-x \log (x)+1\right )}{(x-1) x} \] ✗ Mathematica : cpu = 301.062 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.236 (sec), leaf count = 68
\[ \left \{ y \left ( x \right ) ={\frac {{{\rm e}^{{\it dilog} \left ( x \right ) }}}{x{{\rm e}^{x}}} \left ( \int \!-{\frac {{{\rm e}^{{\it dilog} \left ( x \right ) }} \left ( x+\ln \left ( x \right ) \right ) }{{{\rm e}^{x}} \left ( x-1 \right ) ^{2}}}\,{\rm d}xx+x{\it \_C1}-\int \!-{\frac {{{\rm e}^{{\it dilog} \left ( x \right ) }} \left ( x+\ln \left ( x \right ) \right ) }{{{\rm e}^{x}} \left ( x-1 \right ) ^{2}}}\,{\rm d}x-{\it \_C1} \right ) ^{-1}} \right \} \]