\[ y'(x)=\frac {y(x) \left (x^3-x \log (y(x))-\log (y(x))\right )}{x+1} \] ✓ Mathematica : cpu = 0.105216 (sec), leaf count = 37
\[\left \{\left \{y(x)\to \exp \left (-c_1 e^{-x}-e^{-x-1} \text {Ei}(x+1)+x^2-3 x+4\right )\right \}\right \}\]
✓ Maple : cpu = 0.163 (sec), leaf count = 39
\[ \left \{ y \left ( x \right ) ={\frac {{{\rm e}^{{x}^{2}}}{{\rm e}^{4}}}{ \left ( {{\rm e}^{x}} \right ) ^{3}}{{\rm e}^{{\frac {{\it \_C1}}{{{\rm e}^{x}}}}}}{{\rm e}^{{\frac {{\it Ei} \left ( 1,-1-x \right ) }{{{\rm e}^{x}}{\rm e}}}}}} \right \} \]