2.745   ODE No. 745

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y'(x)=\frac {(y(x) \log (x)-1)^3}{x (-y(x)+y(x) \log (x)-1)} \] Mathematica : cpu = 299.997 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.069 (sec), leaf count = 104

\[ \left \{ y \left ( x \right ) ={\frac {47\,{\it RootOf} \left ( -27783\,\int ^{{\it \_Z}}\! \left ( 2209\,{{\it \_a}}^{3}-9261\,{\it \_a}+9261 \right ) ^{-1}{d{\it \_a}}-7\,\ln \left ( x \right ) +3\,{\it \_C1} \right ) -84}{47\,\ln \left ( x \right ) {\it RootOf} \left ( -27783\,\int ^{{\it \_Z}}\! \left ( 2209\,{{\it \_a}}^{3}-9261\,{\it \_a}+9261 \right ) ^{-1}{d{\it \_a}}-7\,\ln \left ( x \right ) +3\,{\it \_C1} \right ) -84\,\ln \left ( x \right ) -47\,{\it RootOf} \left ( -27783\,\int ^{{\it \_Z}}\! \left ( 2209\,{{\it \_a}}^{3}-9261\,{\it \_a}+9261 \right ) ^{-1}{d{\it \_a}}-7\,\ln \left ( x \right ) +3\,{\it \_C1} \right ) +21}} \right \} \]