\[ y'(x)=\frac {\cos (y(x)) \left (x^3 \cos (y(x))-x-1\right )}{(x+1) (x \sin (y(x))-1)} \] ✗ Mathematica : cpu = 31.4812 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == (Cos[y[x]]*(-1 - x + x^3*Cos[y[x]]))/((1 + x)*(-1 + x*Sin[y[x]])), y[x], x]
✓ Maple : cpu = 1.672 (sec), leaf count = 879
\[ \left \{ y \left ( x \right ) =\arctan \left ( -{\frac {-2\,{x}^{3}+3\,{x}^{2}+6\,\ln \left ( 1+x \right ) -6\,{\it \_C1}-6\,x}{4\,{x}^{6}-12\,{x}^{5}+24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}-24\,{x}^{3}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\,{x}^{2}\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x-72\,{\it \_C1}\,\ln \left ( 1+x \right ) +36\,{x}^{2}-72\,x\ln \left ( 1+x \right ) +36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}+36} \left ( -2\,{x}^{4}+3\,{x}^{3}+6\,x\ln \left ( 1+x \right ) -6\,{\it \_C1}\,x-6\,{x}^{2}-\sqrt {4\,{x}^{6}-12\,{x}^{5}-24\,{x}^{3}\ln \left ( 1+x \right ) +24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}+36\,{x}^{2}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}-72\,{\it \_C1}\,\ln \left ( 1+x \right ) -72\,x\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x+36} \right ) }+x,-6\,{\frac {-2\,{x}^{4}+3\,{x}^{3}+6\,x\ln \left ( 1+x \right ) -6\,{\it \_C1}\,x-6\,{x}^{2}-\sqrt {4\,{x}^{6}-12\,{x}^{5}-24\,{x}^{3}\ln \left ( 1+x \right ) +24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}+36\,{x}^{2}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}-72\,{\it \_C1}\,\ln \left ( 1+x \right ) -72\,x\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x+36}}{4\,{x}^{6}-12\,{x}^{5}+24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}-24\,{x}^{3}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\,{x}^{2}\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x-72\,{\it \_C1}\,\ln \left ( 1+x \right ) +36\,{x}^{2}-72\,x\ln \left ( 1+x \right ) +36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}+36}} \right ) ,y \left ( x \right ) =\arctan \left ( -{\frac {-2\,{x}^{3}+3\,{x}^{2}+6\,\ln \left ( 1+x \right ) -6\,{\it \_C1}-6\,x}{4\,{x}^{6}-12\,{x}^{5}+24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}-24\,{x}^{3}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\,{x}^{2}\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x-72\,{\it \_C1}\,\ln \left ( 1+x \right ) +36\,{x}^{2}-72\,x\ln \left ( 1+x \right ) +36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}+36} \left ( -2\,{x}^{4}+3\,{x}^{3}+6\,x\ln \left ( 1+x \right ) -6\,{\it \_C1}\,x-6\,{x}^{2}+\sqrt {4\,{x}^{6}-12\,{x}^{5}-24\,{x}^{3}\ln \left ( 1+x \right ) +24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}+36\,{x}^{2}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}-72\,{\it \_C1}\,\ln \left ( 1+x \right ) -72\,x\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x+36} \right ) }+x,-6\,{\frac {-2\,{x}^{4}+3\,{x}^{3}+6\,x\ln \left ( 1+x \right ) -6\,{\it \_C1}\,x-6\,{x}^{2}+\sqrt {4\,{x}^{6}-12\,{x}^{5}-24\,{x}^{3}\ln \left ( 1+x \right ) +24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}+36\,{x}^{2}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}-72\,{\it \_C1}\,\ln \left ( 1+x \right ) -72\,x\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x+36}}{4\,{x}^{6}-12\,{x}^{5}+24\,{\it \_C1}\,{x}^{3}+33\,{x}^{4}-24\,{x}^{3}\ln \left ( 1+x \right ) -36\,{\it \_C1}\,{x}^{2}-36\,{x}^{3}+36\,{x}^{2}\ln \left ( 1+x \right ) +36\,{{\it \_C1}}^{2}+72\,{\it \_C1}\,x-72\,{\it \_C1}\,\ln \left ( 1+x \right ) +36\,{x}^{2}-72\,x\ln \left ( 1+x \right ) +36\, \left ( \ln \left ( 1+x \right ) \right ) ^{2}+36}} \right ) \right \} \]