\[ y'(x)=\frac {y(x) \left (x^4-x \log (y(x))-\log (y(x))\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.0916089 (sec), leaf count = 50
\[\left \{\left \{y(x)\to (x+1)^{\frac {1}{x}} e^{-\frac {c_1}{x}+\frac {x^3}{4}-\frac {x^2}{3}+\frac {x}{2}-\frac {25}{12 x}-1}\right \}\right \}\]
✓ Maple : cpu = 0.121 (sec), leaf count = 36
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\frac {{x}^{3}}{4}}}}{{\rm e}^{-{\frac {{x}^{2}}{3}}}}{{\rm e}^{{\frac {x}{2}}}}\sqrt [x]{1+x}{{\rm e}^{{\frac {{\it \_C1}}{x}}}}{{\rm e}^{-1}} \right \} \]