\[ y'(x)=\frac {y(x) (y(x)+x)}{x \left (y(x)^4+y(x)^3+y(x)+x\right )} \] ✓ Mathematica : cpu = 0.404496 (sec), leaf count = 39
\[\text {Solve}\left [\frac {y(x)^3}{3}+\frac {y(x)^2}{2}+\log (y(x))-\frac {y(x) \log (x)+x}{y(x)}=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.136 (sec), leaf count = 38
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\it RootOf} \left ( -2\, \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{4}-3\, \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{3}+6\,\ln \left ( x \right ) {{\rm e}^{{\it \_Z}}}+6\,{\it \_C1}\,{{\rm e}^{{\it \_Z}}}-6\,{\it \_Z}\,{{\rm e}^{{\it \_Z}}}+6\,x \right ) }} \right \} \]