2.836   ODE No. 836

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=(xy(x))y(x)(y(x)+1)x(xy(x)y(x)+x) Mathematica : cpu = 12.5726 (sec), leaf count = 379

Solve[1922/3((1(x1)2(x6(x1)3)2/3((x+2)y(x)+x)x4((x1)y(x)+x))((x6(x1)3)2/3(x1)2((x+2)y(x)+x)x4((x1)y(x)+x)+2)((1(x1)2(x6(x1)3)2/3((x+2)y(x)+x)x4((x1)y(x)+x))log(22/3(1(x1)2(x6(x1)3)2/3((x+2)y(x)+x)x4((x1)y(x)+x)))+((x1)2(x6(x1)3)2/3((x+2)y(x)+x)x4((x1)y(x)+x)1)log(22/3((x6(x1)3)2/3(x1)2((x+2)y(x)+x)x4((x1)y(x)+x)+2))3)3(x1)2(x6(x1)3)2/3((x+2)y(x)+x)x4((x1)y(x)+x)((x+2)y(x)+x)3((x1)y(x)+x)32+(x6(x1)3)2/3(x1)2x3)=c1,y(x)]

Maple : cpu = 0.208 (sec), leaf count = 102

{y(x)=xeRootOf(ln(e_Z2+92)e_Z+3_C1e_Z+_Ze_Ze_Zx+9)(eRootOf(ln(e_Z2+92)e_Z+3_C1e_Z+_Ze_Ze_Zx+9)xeRootOf(ln(e_Z2+92)e_Z+3_C1e_Z+_Ze_Ze_Zx+9)9)1}