\[ y'(x)=\frac {2 a x}{-128 a^4+96 a^3 x y(x)^2+32 a^3 x-24 a^2 x^2 y(x)^4-16 a^2 x^2 y(x)^2+2 a x^3 y(x)^6+2 a x^3 y(x)^4+2 a x^3-x^3 y(x)} \] ✓ Mathematica : cpu = 1.56878 (sec), leaf count = 205
\[\text {Solve}\left [-\text {RootSum}\left [-\text {$\#$1}^3 y(x)^6-\text {$\#$1}^3 y(x)^4-\text {$\#$1}^3+12 \text {$\#$1}^2 a y(x)^4+8 \text {$\#$1}^2 a y(x)^2-48 \text {$\#$1} a^2 y(x)^2-16 \text {$\#$1} a^2+64 a^3\& ,\frac {\text {$\#$1} \log (x-\text {$\#$1})}{3 \text {$\#$1}^2 y(x)^6+3 \text {$\#$1}^2 y(x)^4+3 \text {$\#$1}^2-24 \text {$\#$1} a y(x)^4-16 \text {$\#$1} a y(x)^2+48 a^2 y(x)^2+16 a^2}\& \right ]-\frac {\text {RootSum}\left [248 \text {$\#$1}^3+2 \text {$\#$1}-1\& ,\text {$\#$1} \log \left (248 \text {$\#$1}^2+186 \text {$\#$1}+29 y(x)^2+11\right )\& \right ]-2 a y(x)}{2 a}=c_1,y(x)\right ]\]
✓ Maple : cpu = 4.497 (sec), leaf count = 43
\[ \left \{ -{\frac {y \left ( x \right ) }{2\,a}}+{\frac {1}{8\,{a}^{2}}\int ^{ \left ( y \left ( x \right ) \right ) ^{2}-4\,{\frac {a}{x}}}\! \left ( {{\it \_a}}^{3}+{{\it \_a}}^{2}+1 \right ) ^{-1}{d{\it \_a}}}-{\it \_C1}=0 \right \} \]