\[ y'(x)=\frac {y(x) \left (x \log ^2(y(x))+2 x \log (x) \log (y(x))+x \log (y(x))+\log (y(x))-x+x \log ^2(x)+x \log (x)+\log (x)-1\right )}{x (x+1)} \] ✗ Mathematica : cpu = 1.24147 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == ((-1 - x + Log[x] + x*Log[x] + x*Log[x]^2 + Log[y[x]] + x*Log[y[x]] + 2*x*Log[x]*Log[y[x]] + x*Log[y[x]]^2)*y[x])/(x*(1 + x)), y[x], x]
✓ Maple : cpu = 0.221 (sec), leaf count = 38
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {\ln \left ( 1+x \right ) \ln \left ( x \right ) +{\it \_C1}\,\ln \left ( x \right ) -x\ln \left ( x \right ) -x}{\ln \left ( 1+x \right ) +{\it \_C1}-x}}}} \right \} \]