\[ y'(x)=\frac {x^6-3 x^5+3 x^4 y(x)+x^4-6 x^3 y(x)+2 x^3+3 x^2 y(x)^2+x^2 y(x)-3 x^2-3 x y(x)^2+x y(x)+y(x)^3+x}{x \left (x^2+y(x)-x+1\right )} \] ✓ Mathematica : cpu = 0.023322 (sec), leaf count = 76
\[\left \{\left \{y(x)\to \frac {1}{x \left (\frac {1}{x}-\frac {1}{x \sqrt {c_1-2 \log (x)}}\right )}-x^2+x-1\right \},\left \{y(x)\to \frac {1}{x \left (\frac {1}{x \sqrt {c_1-2 \log (x)}}+\frac {1}{x}\right )}-x^2+x-1\right \}\right \}\]
✓ Maple : cpu = 0.047 (sec), leaf count = 97
\[ \left \{ y \left ( x \right ) =-{1 \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{2}-\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }x-{x}^{2}+x-1 \right ) \left ( -1+\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) } \right ) ^{-1}},y \left ( x \right ) =-{1 \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{2}-\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }x+{x}^{2}-x+1 \right ) \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }+1 \right ) ^{-1}} \right \} \]