\[ y'(x)=\frac {-24 x^{7/2} y(x)+\frac {24 x^{13/2}}{5}+14 x^{7/2}+40 x^{3/2}+\frac {8 x^9}{25}-\frac {12}{5} x^6 y(x)+\frac {12 x^6}{5}+24 x^4+6 x^3 y(x)^2-6 x^3 y(x)-6 x^3-60 x y(x)+30 \sqrt {x} y(x)^2-5 \sqrt {x} y(x)-5 y(x)^3+10 x-5 \sqrt {x}}{x \left (2 x^3-5 y(x)+10 \sqrt {x}-5\right )} \] ✓ Mathematica : cpu = 0.041723 (sec), leaf count = 112
\[\left \{\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{x \sqrt {c_1-31250 \log (x)}}-\frac {1}{125 x}\right )}\right \},\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (\frac {1}{x \sqrt {c_1-31250 \log (x)}}-\frac {1}{125 x}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.112 (sec), leaf count = 111
\[ \left \{ y \left ( x \right ) ={\frac {1}{5} \left ( 2\,\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{3}-2\,{x}^{3}+10\,\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }\sqrt {x}-10\,\sqrt {x}+5 \right ) \left ( -1+\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) } \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{5} \left ( 2\,\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{3}+2\,{x}^{3}+10\,\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }\sqrt {x}+10\,\sqrt {x}-5 \right ) \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }+1 \right ) ^{-1}} \right \} \]