[next] [prev] [prev-tail] [tail] [up]
y′(x)=−x3+3x2y(x)+x2−3xy(x)2+y(x)3(x−1)(x+1) ✓ Mathematica : cpu = 0.254323 (sec), leaf count = 238
Solve[13log(3y(x)x2−1−3xx2−131(x−1)3(x+1)33+1)−16log((3y(x)x2−1−3xx2−1)29(1(x−1)3(x+1)3)2/3−3y(x)x2−1−3xx2−131(x−1)3(x+1)33+1)+tan−1(2(3y(x)x2−1−3xx2−1)31(x−1)3(x+1)33−13)3=c1+12(1(x2−1)3)2/3(x2−1)2(log(1−x)−log(x+1)),y(x)]
✓ Maple : cpu = 0.278 (sec), leaf count = 469
{y(x)=36(31(1+x)3(x−1)33x2+31(1+x)3(x−1)33tan(RootOf(−18ln(1+x)(1(1+x)3(x−1)3)2/3x4+18ln(x−1)(1(1+x)3(x−1)3)2/3x4+36ln(1+x)(1(1+x)3(x−1)3)2/3x2−36ln(x−1)(1(1+x)3(x−1)3)2/3x2−18(1(1+x)3(x−1)3)2/3ln(1+x)+18(1(1+x)3(x−1)3)2/3ln(x−1)−12_Z3−6ln(4/3((tan(_Z))2+1)−1)−4ln(3/8(3+tan(_Z))33(1+x)3(x−1)3)+4ln(1(1+x)3(x−1)3)+36_C1))x2−31(1+x)3(x−1)33+23x−3tan(RootOf(−18ln(1+x)(1(1+x)3(x−1)3)2/3x4+18ln(x−1)(1(1+x)3(x−1)3)2/3x4+36ln(1+x)(1(1+x)3(x−1)3)2/3x2−36ln(x−1)(1(1+x)3(x−1)3)2/3x2−18(1(1+x)3(x−1)3)2/3ln(1+x)+18(1(1+x)3(x−1)3)2/3ln(x−1)−12_Z3−6ln(4/3((tan(_Z))2+1)−1)−4ln(3/8(3+tan(_Z))33(1+x)3(x−1)3)+4ln(1(1+x)3(x−1)3)+36_C1))1(1+x)3(x−1)33)}
[next] [prev] [prev-tail] [front] [up]