\[ y(x) \left (a e^{2 x}+b e^x+c\right )+y''(x)=0 \] ✓ Mathematica : cpu = 0.682087 (sec), leaf count = 180
\[\left \{\left \{y(x)\to c_1 e^{i \left (\sqrt {c} \log \left (e^x\right )-\sqrt {a} e^x\right )} U\left (\frac {i \left (b-i \sqrt {a}+2 \sqrt {a} \sqrt {c}\right )}{2 \sqrt {a}},2 i \sqrt {c}+1,2 i \sqrt {a} e^x\right )+c_2 e^{i \left (\sqrt {c} \log \left (e^x\right )-\sqrt {a} e^x\right )} L_{-\frac {i \left (2 \sqrt {a} \sqrt {c}-i \sqrt {a}+b\right )}{2 \sqrt {a}}}^{2 i \sqrt {c}}\left (2 i \sqrt {a} e^x\right )\right \}\right \}\]
✓ Maple : cpu = 0.186 (sec), leaf count = 58
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {x}{2}}}} \left ( {{\sl W}_{{-{\frac {i}{2}}b{\frac {1}{\sqrt {a}}}},\,i\sqrt {c}}\left (2\,i\sqrt {a}{{\rm e}^{x}}\right )}{\it \_C2}+{{\sl M}_{{-{\frac {i}{2}}b{\frac {1}{\sqrt {a}}}},\,i\sqrt {c}}\left (2\,i\sqrt {a}{{\rm e}^{x}}\right )}{\it \_C1} \right ) \right \} \]