\[ y(x) \left (a x+l x^2-n (n+1)\right )+x^2 y''(x)+2 x y'(x)=0 \] ✓ Mathematica : cpu = 0.0539711 (sec), leaf count = 142
\[\left \{\left \{y(x)\to c_1 e^{n \log (x)-i \sqrt {l} x} U\left (\frac {i \left (a-2 i \sqrt {l} n-2 i \sqrt {l}\right )}{2 \sqrt {l}},2 n+2,2 i \sqrt {l} x\right )+c_2 e^{n \log (x)-i \sqrt {l} x} L_{-\frac {i \left (a-2 i \sqrt {l} n-2 i \sqrt {l}\right )}{2 \sqrt {l}}}^{2 n+1}\left (2 i \sqrt {l} x\right )\right \}\right \}\]
✓ Maple : cpu = 0.122 (sec), leaf count = 49
\[ \left \{ y \left ( x \right ) ={\frac {1}{x} \left ( {\it \_C1}\,{{\sl M}_{{-{\frac {i}{2}}a{\frac {1}{\sqrt {l}}}},\,n+{\frac {1}{2}}}\left (2\,i\sqrt {l}x\right )}+{\it \_C2}\,{{\sl W}_{{-{\frac {i}{2}}a{\frac {1}{\sqrt {l}}}},\,n+{\frac {1}{2}}}\left (2\,i\sqrt {l}x\right )} \right ) } \right \} \]