\[ y(x) (a x+b)+x^2 y''(x)+x^2 y'(x)=0 \] ✓ Mathematica : cpu = 0.0313688 (sec), leaf count = 122
\[\left \{\left \{y(x)\to c_1 e^{\frac {1}{2} \left (\left (\sqrt {1-4 b}+1\right ) \log (x)-2 x\right )} U\left (\frac {1}{2} \left (-2 a+\sqrt {1-4 b}+1\right ),\sqrt {1-4 b}+1,x\right )+c_2 e^{\frac {1}{2} \left (\left (\sqrt {1-4 b}+1\right ) \log (x)-2 x\right )} L_{\frac {1}{2} \left (2 a-\sqrt {1-4 b}-1\right )}^{\sqrt {1-4 b}}(x)\right \}\right \}\]
✓ Maple : cpu = 0.09 (sec), leaf count = 38
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {x}{2}}}} \left ( {{\sl W}_{a,\,{\frac {1}{2}\sqrt {1-4\,b}}}\left (x\right )}{\it \_C2}+{{\sl M}_{a,\,{\frac {1}{2}\sqrt {1-4\,b}}}\left (x\right )}{\it \_C1} \right ) \right \} \]