\[ x y'(x) \left (a x^n+b\right )+y(x) \left (\text {a1} x^{2 n}+\text {b1} x^n+\text {c1}\right )+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 0.163448 (sec), leaf count = 664
\[\left \{\left \{y(x)\to c_1 x^{\frac {1-n}{2}} 2^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \left (x^n\right )^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \exp \left (\frac {1}{2} \left (-\frac {a x^n}{n}-b \log (x)\right )-\frac {\sqrt {a^2-4 \text {a1}} x^n}{2 n}\right ) U\left (\frac {\frac {\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2} a^2}{n^2}+a^2+\sqrt {a^2-4 \text {a1}} a+\frac {\sqrt {a^2-4 \text {a1}} b a}{n}-\frac {\sqrt {a^2-4 \text {a1}} a}{n}-4 \text {a1}-\frac {4 \text {a1} \sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}}{n^2}-\frac {2 \sqrt {a^2-4 \text {a1}} \text {b1}}{n}}{2 \left (a^2-4 \text {a1}\right )},\frac {n^2+\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}}{n^2},\frac {\sqrt {a^2-4 \text {a1}} x^n}{n}\right )+c_2 x^{\frac {1-n}{2}} 2^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \left (x^n\right )^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \exp \left (\frac {1}{2} \left (-\frac {a x^n}{n}-b \log (x)\right )-\frac {\sqrt {a^2-4 \text {a1}} x^n}{2 n}\right ) L_{-\frac {\frac {a b \sqrt {a^2-4 \text {a1}}}{n}-\frac {2 \text {b1} \sqrt {a^2-4 \text {a1}}}{n}-\frac {a \sqrt {a^2-4 \text {a1}}}{n}+a \sqrt {a^2-4 \text {a1}}+\frac {a^2 \sqrt {n^2 \left (b^2-2 b-4 \text {c1}+1\right )}}{n^2}+a^2-\frac {4 \text {a1} \sqrt {n^2 \left (b^2-2 b-4 \text {c1}+1\right )}}{n^2}-4 \text {a1}}{2 \left (a^2-4 \text {a1}\right )}}^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{n^2}-1}\left (\frac {\sqrt {a^2-4 \text {a1}} x^n}{n}\right )\right \}\right \}\]
✓ Maple : cpu = 0.176 (sec), leaf count = 148
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {a{x}^{n}}{2\,n}}}}{x}^{-{\frac {b}{2}}-{\frac {n}{2}}+{\frac {1}{2}}} \left ( {{\sl W}_{-{\frac { \left ( b+n-1 \right ) a-2\,{\it b1}}{2\,n}{\frac {1}{\sqrt {{a}^{2}-4\,{\it a1}}}}},\,{\frac {1}{2\,n}\sqrt {{b}^{2}-2\,b-4\,{\it c1}+1}}}\left ({\frac {{x}^{n}}{n}\sqrt {{a}^{2}-4\,{\it a1}}}\right )}{\it \_C2}+{{\sl M}_{-{\frac { \left ( b+n-1 \right ) a-2\,{\it b1}}{2\,n}{\frac {1}{\sqrt {{a}^{2}-4\,{\it a1}}}}},\,{\frac {1}{2\,n}\sqrt {{b}^{2}-2\,b-4\,{\it c1}+1}}}\left ({\frac {{x}^{n}}{n}\sqrt {{a}^{2}-4\,{\it a1}}}\right )}{\it \_C1} \right ) \right \} \]