\[ y''(x)=-\frac {y'(x) \left (a (b+2) x^2+x (c-d+1)\right )}{x^2 (a x+1)}-\frac {y(x) (a b x-c d)}{x^2 (a x+1)} \] ✓ Mathematica : cpu = 0.276933 (sec), leaf count = 66
\[\left \{\left \{y(x)\to c_1 a^{-c} x^{-c} \, _2F_1(1-c,b-c;-c-d+1;-a x)+c_2 a^d x^d \, _2F_1(d+1,b+d;c+d+1;-a x)\right \}\right \}\]
✓ Maple : cpu = 0.142 (sec), leaf count = 76
\[ \left \{ y \left ( x \right ) = \left ( ax+1 \right ) ^{-b+c-d} \left ( {x}^{-c}{\mbox {$_2$F$_1$}(-d,1-b-d;\,1-d-c;\,-ax)}{\it \_C2}+{x}^{d}{\mbox {$_2$F$_1$}(c,1-b+c;\,1+d+c;\,-ax)}{\it \_C1} \right ) \right \} \]