\[ -y'(x) (a+4 n (n+1) \wp (x;\text {g2},\text {g3}))-2 n (n+1) y(x) \wp '(x;\text {g2},\text {g3})+y^{(3)}(x)=0 \] ✗ Mathematica : cpu = 0.02018 (sec), leaf count = 0 , could not solve
DSolve[-2*n*(1 + n)*WeierstrassPPrime[x, {g2, g3}]*y[x] - (a + 4*n*(1 + n)*WeierstrassP[x, {g2, g3}])*Derivative[1][y][x] + Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[ \left \{ y \left ( x \right ) = \left ( {\it DESol} \left ( \left \{ {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}{\it \_Y} \left ( x \right ) + \left ( -{n}^{2}{\it WeierstrassP} \left ( x,{\it g2},{\it g3} \right ) -n{\it WeierstrassP} \left ( x,{\it g2},{\it g3} \right ) -{\frac {a}{4}} \right ) {\it \_Y} \left ( x \right ) \right \} , \left \{ {\it \_Y} \left ( x \right ) \right \} \right ) \right ) ^{2} \right \} \]