\[ y''(x)-2 a x \left (y'(x)^2+1\right )^{3/2}=0 \] ✓ Mathematica : cpu = 0.277485 (sec), leaf count = 308
\[\left \{\left \{y(x)\to c_2-\frac {\sqrt {\frac {a x^2+c_1-1}{c_1-1}} \sqrt {\frac {a x^2+c_1+1}{c_1+1}} \left (F\left (i \sinh ^{-1}\left (x \sqrt {\frac {a}{c_1+1}}\right )|\frac {c_1+1}{c_1-1}\right )+\left (c_1-1\right ) E\left (i \sinh ^{-1}\left (x \sqrt {\frac {a}{c_1+1}}\right )|\frac {c_1+1}{c_1-1}\right )\right )}{\sqrt {\frac {a}{c_1+1}} \sqrt {a^2 x^4+2 a c_1 x^2+c_1^2-1}}\right \},\left \{y(x)\to c_2+\frac {\sqrt {\frac {a x^2+c_1-1}{c_1-1}} \sqrt {\frac {a x^2+c_1+1}{c_1+1}} \left (F\left (i \sinh ^{-1}\left (x \sqrt {\frac {a}{c_1+1}}\right )|\frac {c_1+1}{c_1-1}\right )+\left (c_1-1\right ) E\left (i \sinh ^{-1}\left (x \sqrt {\frac {a}{c_1+1}}\right )|\frac {c_1+1}{c_1-1}\right )\right )}{\sqrt {\frac {a}{c_1+1}} \sqrt {a^2 x^4+2 a c_1 x^2+c_1^2-1}}\right \}\right \}\]
✓ Maple : cpu = 0.187 (sec), leaf count = 38
\[ \left \{ y \left ( x \right ) =\int \!\sqrt {- \left ( -1+ \left ( {x}^{2}+2\,{\it \_C1} \right ) ^{2}{a}^{2} \right ) ^{-1}}a \left ( {x}^{2}+2\,{\it \_C1} \right ) \,{\rm d}x+{\it \_C2} \right \} \]