\[ a y(x) y'(x)^2+b x+x^2 y''(x)=0 \] ✗ Mathematica : cpu = 46.7316 (sec), leaf count = 0 , could not solve
DSolve[b*x + a*y[x]*Derivative[1][y][x]^2 + x^2*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 2.267 (sec), leaf count = 101
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a}\,{{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) = \left ( a{{\it \_a}}^{3}+b \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{3}+ \left ( 2\,{{\it \_a}}^{2}a+1 \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}+{\it \_a}\,{\it \_b} \left ( {\it \_a} \right ) a \right \} , \left \{ {\it \_a}={\frac {y \left ( x \right ) }{x}},{\it \_b} \left ( {\it \_a} \right ) ={\frac {x}{x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) }} \right \} , \left \{ x={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},y \left ( x \right ) ={\it \_a}\,{{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right \} ] \right ) \right \} \]